Lecture 2: DL Basics

Deep Learning (iR )% % >J)
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Machine Learning Basics



Overview

e Introduction to ML
 Capacity, Overfitting and Underfitting

e Estimators, Bias and Variance
 Maximum Likelihood Estimation
 Bayesian Statistics

 Challenges Motivating Deep Learning



L_earning Algorithms

« An algorithm that is able to learn from data
« Mitchell (1997)

* “A computer program is said to learn from experience E
with respect to some class of tasks T and performance
measures P, If its performance at tasks in T, as measured
by P, improved with experience E.”
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Three Steps for Machine Learning

Step 1:
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set of -

model loss function optimization




Capacity, Overfitting and Underfitting

* Generalization

. The ability to perform well on previously unobserved inputs
(i.e. out-of-sample)

 Data generating process
e i.i.d.assumptions = independently and identically distributed
 Data-generating distribution, pgqta

« Expected [Generalization error (or test error)] = Expected
(training error)

 Goal of ML algorithms
« Make the training error small
* If not, underfitting
« Make the gap between training and test error small
* If not, overfitting



Overfitting and Complexity




Overfitting and Complexity

Simple model: Y=aX+b +e




Overfitting and Complexity

Y = high-order polynomial in X
(complex model)
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Simple model: Y=aX+b+e




Overfitting and Complexity




How Overfitting affects Prediction
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Capacity

* A model’s ability to fit a wide variety of functions

» Ways to control the capacity
« Hypothesis space (input features)
* The model

* Representation capacity vs. effective capacity

e Occam’s razor
* Quantifying model capacity (VC dimension)

« Nonparametric vs. parametric
* Size of the training set

Error




Polynomial Estimation

Underfitting Appropriate capacity Overtitting
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Training Data Size

Error (MSE)

Optimal capacity (polynomial degree)
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Regularization

e Cost function
](W) = MSEt qin

* Cost function + penalty (regularizer)
J(w) Z_MSEtrain +_ Af (w)
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Regularization
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No free Lunch Theorem

* No machine learning algorithm is universally better
than any other

« The most sophisticated algorithm has the same average
performance (over all possible tasks) as merely
predicting that every point belongs to the same class

 Goal of real ML research is to understand the mapping of
ML algorithms to data generating distributions



Estimators, Bias and Variance



Point Estimation

 Any function of the data, {x1, ..., x™}aset of mi.i.d.
data points
6., =g(xt, .., x™
 Function estimation
* Point estimator in function space, e.g.
*y=f(x)+e



Bias

* bias(0,,) = E(8,,) — 6
- Unbiased: bias(8,,) = 0
- Asymptotically unbiased: lim bias(8,,) = 0

m-—0oo

« Examples
* Bernoulli distribution

e Gaussian Distribution Estimators of the mean and
variance



Variance and Standard Error

* Variance of an estimator
var(6)
« Variance of the estimator as we independently resample
the dataset from the underlying data-generating process

» Standard error: SE(6)

e Central limit theorem: normal distribution
* 959% confidence interval centered on the mean i,

(ﬁm _ 1-96SE(ﬁm): fm + 1-96SE(ﬁm))



Tradeoff Between Bias and Variance

MSE = E [(ém - 9)2] — Bias(ém)z + Var(ém)

Underfitting zone Overfitting zone
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Consistency

e plim,,, o 0, = 6
* Ve > O,P(|ém—9‘ >¢€)—> 0,asm —

* The bias diminishes as the increase of data size
 The reverse IS not true



MLE

Oy = arg maX p'model(X 8)

= arg max 1_[ Pmodel (x 9)

* Take the logarithm

0, = arg maxz log pmodel(x 9)
i=1

= argmax Ey.p,,,,108 Pmodet (%; 6)



KL Explanation

DKL(ﬁdata | pm(l)\del)
— [Ex~ﬁdam [log Daata (x) — 108 Pmoder (X)]

« To minimize the KL divergence, equal to minimize
_IEvaﬁdata [log Pmodel (x)]



Conditional Log-likelihood

* Oy = arg max [T2,log P(yi| xt; 9)

« Example
* Linear regression as Maximum Likelihood



Properties of ML

 The best estimator asymptotically in terms of
convergences as m increases

 Consistency
* Efficiency
* Property of consistency

* PaatgMust lie within the model family p;,04e:(.; 6)
* DaatgMUst correspond to exactly one value of 6



Bayesian Statistics

 Consider all possible value of & when making a prediction
1 m
. ) o p(x%, ..., x™|0)p(6)
p(Olx, ..., x™) = p(x1,..x™M)

* Prior probability distribution: p(6) (high entropy to reflect high
uncertainty)

- Data likelihood: p(x?, ..., x™|0)

« Major differences with MLE
« Make prediction using full distribution over 6

p(x™xl, ..., x™) = Jp(xm“IH) p(0|xt, ..., x™)d6

 The influence of priors
« Example: Bayesian Linear Regression



Maximum A Posteriori Estimation (MAP)

Omap = argmaxp(0|x)
= arg max logp(8|x) + logp(6)
m

« Advantages:

« With full Bayesian, leverage information brought by
prior and cannot be found in training data, reduce
variance but increase bias

 Could design complicated yet interpretable regularization
terms

 MLE + regularizer = MAP



Challenges Motivating Deep
L_earning



The Curse of Dimensionality

« ML learning becomes exceedingly difficult when
the number of dimensions in the data is high

« Statistical challenge

 Arose the smoothness assumption



|_ocal Constancy and Smoothness
Regularization

* Local constancy prior: Learnt function should keep
stable within a small region
[~ fr(x+e)
« Many simpler algorithms rely exclusively on the

local constancy prior to generalize well
» fail to scale to the statistical challenges in Al-level tasks
* E.g. KNN, decision tree



Break Input Space Into Regions

Nearest Neighbor
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_ocal Constancy and Smoothness
Regularization

 To answer two questions
* Whether possible to represent a complicated function
efficiently?
* Whether possible to generalize well to new inputs?

e Solutions

* Introduce dependencies among regions

« DL methods DO without stronger task specific assumptions:
exponential gain



Manifold Learning

« Manifold assumption
* Most of R™ consists of invalid inputs

* Interesting variations happen only when move from one
manifold to another

* The data lies along a low-dimensional manifold
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Manifold Learning

 Images, sounds and text strings are highly
concentrated, and in favor of manifold hypothesis

 Represent data in terms of coordinates on the manifold
« Manifold transformations are imaginably possible




Manifold Learning

 Extracting manifolds is challenging but promising
 E.g. textbook section 20.10.4
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Reading Materials

* Christopher Bishop, Pattern Recognition and
Machine Learning, Springer Publisher, 2006





