
Lecture 2: DL Basics

Deep Learning (深度学习)
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• Linear Algebra

• Probability and Information Theory

• Mathematical Optimization

• Machine Learning Basics

• All these materials can refer to the references books
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Machine Learning Basics



Overview

• Introduction to ML

• Capacity, Overfitting and Underfitting

• Estimators, Bias and Variance

• Maximum Likelihood Estimation

• Bayesian Statistics

• Challenges Motivating Deep Learning



Learning Algorithms

• An algorithm that is able to learn from data

• Mitchell (1997)

• “A computer program is said to learn from experience E
with respect to some class of tasks T and performance 
measures P, if its performance at tasks in T, as measured 
by P, improved with experience E.”



Framework 
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Three Steps for Machine Learning

model loss function optimization



Capacity, Overfitting and Underfitting

• Generalization
• The ability to perform well on previously unobserved inputs 

(i.e. out-of-sample)

• Data generating process
• 𝑖. 𝑖. 𝑑. assumptions = independently and identically distributed
• Data-generating distribution, 𝑝𝑑𝑎𝑡𝑎
• Expected [Generalization error (or test error)] = Expected 

(training error)

• Goal of ML algorithms
• Make the training error small

• If not, underfitting

• Make the gap between training and test error small
• If not, overfitting



Overfitting and Complexity
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How Overfitting affects Prediction



Capacity

• A model’s ability to fit a wide variety of functions

• Ways to control the capacity

• Hypothesis space (input features)

• The model

• Representation capacity vs. effective capacity

• Occam’s razor

• Quantifying model capacity (VC dimension)

• Nonparametric  vs. parametric

• Size of the training set



Polynomial Estimation



Training Data Size



Regularization

• Cost function
𝐽 𝑤 = 𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛

• Cost function + penalty (regularizer)
𝐽 𝑤 = 𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛 + 𝜆𝑓(𝑤)



Regularization

L1/L2约束、数据增强 权重衰减、随机梯度下降、提前停止

所有损害优化的方法都是正则化。

增加优化约束 干扰优化过程



No free Lunch Theorem

• No machine learning algorithm is universally better 
than any other

• The most sophisticated algorithm has the same average 
performance (over all possible tasks) as merely 
predicting that every point belongs to the same class

• Goal of real ML research is to understand the mapping of 
ML algorithms to data generating distributions



Estimators, Bias and Variance



Point Estimation

• Any function of the data, 𝑥1, … , 𝑥𝑚 a set of m i.i.d. 
data points

መ𝜃𝑚 = 𝑔(𝑥1, … , 𝑥𝑚)

• Function estimation

• Point estimator in function space, e.g. 

• 𝑦 = 𝑓 𝑥 + 𝜖



Bias

• bias መ𝜃𝑚 = 𝔼 መ𝜃𝑚 − 𝜃

• Unbiased: bias መ𝜃𝑚 = 0

• Asymptotically unbiased: lim
m→∞

bias መ𝜃𝑚 = 0

• Examples

• Bernoulli distribution

• Gaussian Distribution Estimators of the mean and 
variance



Variance and Standard Error

• Variance of an estimator
var( መ𝜃)

• Variance of the estimator as we independently resample 
the dataset from the underlying data-generating process

• Standard error: SE( 𝜃)

• Central limit theorem: normal distribution
• 95% confidence interval centered on the mean ො𝜇𝑚

( ො𝜇𝑚 − 1.96SE ො𝜇𝑚 , ො𝜇𝑚 + 1.96SE ො𝜇𝑚 )



Tradeoff Between Bias and Variance

𝑀𝑆𝐸 = 𝔼 መ𝜃𝑚 − 𝜃
2
= 𝐵𝑖𝑎𝑠 መ𝜃𝑚

2
+ 𝑉𝑎𝑟 መ𝜃𝑚



Consistency 

• plim𝑚→∞
መ𝜃𝑚 = 𝜃

• ∀𝜖 > 0, 𝑃( መ𝜃𝑚 − 𝜃 > 𝜖) → 0, as 𝑚 → ∞

• The bias diminishes as the increase of data size

• The reverse is not true



MLE

𝜃𝑀𝐿 = argmax
𝜃

𝑝𝑚𝑜𝑑𝑒𝑙(𝕏; 𝜃)

= argmax
𝜃

ෑ

𝑖=1

𝑚

𝑝𝑚𝑜𝑑𝑒𝑙 𝑥
𝑖; 𝜃

• Take the logarithm 

𝜃𝑀𝐿 = argmax
𝜃



𝑖=1

𝑚

log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥
𝑖; 𝜃

= argmax
𝜃

𝔼𝑥~ ො𝑝𝑑𝑎𝑡𝑎log 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥; 𝜃



KL Explanation

𝐷𝐾𝐿 Ƹ𝑝𝑑𝑎𝑡𝑎 ∥ 𝑝𝑚𝑜𝑑𝑒𝑙
= 𝔼𝑥∼ ො𝑝𝑑𝑎𝑡𝑎[log Ƹ𝑝𝑑𝑎𝑡𝑎 𝑥 − log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥)]

• To minimize the KL divergence, equal to minimize
−𝔼𝑥∼ ො𝑝𝑑𝑎𝑡𝑎 log 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥 ]



Conditional Log-likelihood 

• 𝜃ML = argmax
𝜃

ς𝑖=1
𝑚 log 𝑃 𝑦𝑖| 𝑥𝑖; 𝜃

• Example 

• Linear regression as Maximum Likelihood



Properties of ML

• The best estimator asymptotically in terms of 
convergences as m increases

• Consistency 

• Efficiency 

• Property of consistency

• 𝑝𝑑𝑎𝑡𝑎must lie within the model family 𝑝𝑚𝑜𝑑𝑒𝑙 . ; 𝜃

• 𝑝𝑑𝑎𝑡𝑎must correspond to exactly one value of 𝜃



Bayesian Statistics

• Consider all possible value of 𝜃 when making a prediction

• 𝑝 𝜃 𝑥1, … , 𝑥𝑚 =
𝑝 𝑥1, … , 𝑥𝑚 𝜃 𝑝(𝜃)

𝑝(𝑥1,…,𝑥𝑚)
• Prior probability distribution: 𝑝 𝜃 (high entropy to reflect high 

uncertainty)

• Data likelihood: 𝑝 𝑥1, … , 𝑥𝑚 𝜃

• Major differences with MLE
• Make prediction using full distribution over 𝜃

𝑝 𝑥𝑚+1 𝑥1, … , 𝑥𝑚 = න𝑝 𝑥𝑚+1 𝜃 p 𝜃 𝑥1, … , 𝑥𝑚 𝑑𝜃

• The influence of priors

• Example: Bayesian Linear Regression



Maximum A Posteriori Estimation (MAP)

𝜃𝑀𝐴𝑃 = argmax
m

𝑝(𝜃|𝑥)

= argmax
m

log 𝑝(𝜃|𝑥) + log 𝑝 𝜃

• Advantages:

• With full Bayesian, leverage information brought by 
prior and cannot be found in training data, reduce 
variance but increase bias

• Could design complicated yet interpretable regularization 
terms 

• MLE + regularizer = MAP



Challenges Motivating Deep 
Learning



The Curse of Dimensionality 

• ML learning becomes exceedingly difficult when 
the number of dimensions in the data is high
• Statistical challenge

• Arose the smoothness assumption 



Local Constancy and Smoothness 
Regularization

• Local constancy prior: Learnt function should keep 
stable within a small region

𝑓∗(𝑥) ≈ 𝑓∗ 𝑥 + 𝜖

• Many simpler algorithms rely exclusively on the 
local constancy prior to generalize well

• fail to scale to the statistical challenges in AI-level tasks

• E.g. KNN, decision tree



Break Input Space Into Regions



Local Constancy and Smoothness 
Regularization

• To answer two questions

• Whether possible to represent a complicated function 
efficiently?

• Whether possible to generalize well to new inputs?

• Solutions

• Introduce dependencies among regions

• DL methods DO without stronger task specific assumptions: 
exponential gain



Manifold Learning

• Manifold assumption

• Most of ℝ𝑛 consists of invalid inputs

• Interesting variations happen only when move from one 
manifold to another

• The data lies along a low-dimensional manifold



Manifold Learning

• Images, sounds and text strings are highly 
concentrated, and in favor of manifold hypothesis

• Represent data in terms of coordinates on the manifold

• Manifold transformations are imaginably possible 



Manifold Learning

• Extracting manifolds is challenging but promising

• E.g. textbook section 20.10.4



Reading Materials

• Christopher Bishop, Pattern Recognition and 
Machine Learning, Springer Publisher, 2006




