Lecture 2: DL Basics

Deep Learning (深度学习)

Overview

- Linear Algebra
- Probability and Information Theory
- Mathematical Optimization
- Machine Learning Basics
- <u>All these materials can refer to the references books</u>

Overview

- Linear Algebra
- Probability and Information Theory
- Mathematical Optimization
- Machine Learning Basics
- <u>All these materials can refer to the references books</u>

Machine Learning Basics

Overview

- Introduction to ML
- Capacity, Overfitting and Underfitting
- Estimators, Bias and Variance
 - Maximum Likelihood Estimation
 - Bayesian Statistics
- Challenges Motivating Deep Learning

Learning Algorithms

- An algorithm that is able to learn from data
- Mitchell (1997)
 - "A computer program is said to learn from experience *E* with respect to some class of tasks *T* and performance measures *P*, if its performance at tasks in *T*, as measured by *P*, improved with experience *E*."

Sentiment analysis:

f("I love the restaurant") = "+" (positive)

Framework

Three Steps for Machine Learning

Capacity, Overfitting and Underfitting

- Generalization
 - The ability to perform well on previously unobserved inputs (i.e. out-of-sample)
- Data generating process
 - *i*. *i*. *d*. assumptions = independently and identically distributed
 - Data-generating distribution, p_{data}
 - Expected [Generalization error (or test error)] = Expected (training error)
- Goal of ML algorithms
 - Make the training error small
 - If not, underfitting
 - Make the gap between training and test error small
 - If not, overfitting

How Overfitting affects Prediction

Capacity

- A model's ability to fit a wide variety of functions
- Ways to control the capacity
 - Hypothesis space (input features)
 - The model
 - Representation capacity vs. effective capacity
 - Occam's razor
 - Quantifying model capacity (VC dimension)
 - Nonparametric vs. parametric
 - Size of the training set

Polynomial Estimation

Training Data Size

Regularization

• Cost function

$$J(w) = MSE_{train}$$

• Cost function + penalty (regularizer)
$$J(w) = MSE_{train} + \lambda f(w)$$

Regularization

No free Lunch Theorem

- No machine learning algorithm is universally better than any other
 - The most sophisticated algorithm has the same average performance (over all possible tasks) as merely predicting that every point belongs to the same class
 - Goal of real ML research is to understand the mapping of ML algorithms to data generating distributions

Estimators, Bias and Variance

Point Estimation

Any function of the data, {x¹, ..., x^m} a set of m i.i.d. data points

$$\hat{\theta}_m = g(x^1, \dots, x^m)$$

- Function estimation
 - Point estimator in function space, e.g.

•
$$y = f(x) + \epsilon$$

Bias

- $\operatorname{bias}(\hat{\theta}_m) = \mathbb{E}(\hat{\theta}_m) \theta$
- Unbiased: $bias(\hat{\theta}_m) = 0$
- Asymptotically unbiased: $\lim_{m \to \infty} \text{bias}(\hat{\theta}_m) = 0$
- Examples
 - Bernoulli distribution
 - Gaussian Distribution Estimators of the mean and variance

Variance and Standard Error

• Variance of an estimator

 $\operatorname{var}(\hat{\theta})$

- Variance of the estimator as we independently resample the dataset from the underlying data-generating process
- Standard error: $SE(\hat{\theta})$
- Central limit theorem: normal distribution
 - 95% confidence interval centered on the mean $\hat{\mu}_m$ $(\hat{\mu}_m - 1.96\text{SE}(\hat{\mu}_m), \hat{\mu}_m + 1.96\text{SE}(\hat{\mu}_m))$

Tradeoff Between Bias and Variance

$$MSE = \mathbb{E}\left[\left(\hat{\theta}_m - \theta\right)^2\right] = Bias(\hat{\theta}_m)^2 + Var(\hat{\theta}_m)$$

Consistency

- $\operatorname{plim}_{m \to \infty} \hat{\theta}_m = \theta$
- $\forall \epsilon > 0, P(|\hat{\theta}_m \theta| > \epsilon) \to 0, \text{ as } m \to \infty$
- The bias diminishes as the increase of data size
 - The reverse is not true

MLE

$$\theta_{ML} = \arg \max_{\substack{m \\ \theta}} p_{model}(X; \theta)$$
$$= \arg \max_{\theta} \prod_{i=1}^{m} p_{model}(x^{i}; \theta)$$

• Take the logarithm

$$\theta_{ML} = \arg \max_{\theta} \sum_{i=1}^{m} \log p_{model}(x^{i}; \theta)$$
$$= \arg \max_{\theta} \mathbb{E}_{x \sim \hat{p}_{data}} \log p_{model}(x; \theta)$$

KL Explanation

$$D_{KL}(\hat{p}_{data} \parallel p_{model}) = \mathbb{E}_{x \sim \hat{p}_{data}}[\log \hat{p}_{data}(x) - \log p_{model}(x)]$$

• To minimize the KL divergence, equal to minimize $-\mathbb{E}_{x\sim \hat{p}_{data}}[\log p_{model}(x)]$

Conditional Log-likelihood

- $\theta_{\text{ML}} = \arg \max_{\theta} \prod_{i=1}^{m} \log P(y^i | x^i; \theta)$
- Example
 - Linear regression as Maximum Likelihood

Properties of ML

- The best estimator asymptotically in terms of convergences as m increases
 - Consistency
 - Efficiency
- Property of consistency
 - p_{data} must lie within the model family $p_{model}(.; \theta)$
 - p_{data} must correspond to exactly one value of θ

Bayesian Statistics

• Consider all possible value of θ when making a prediction

•
$$p(\theta|x^1, \dots, x^m) = \frac{p(x^1, \dots, x^m|\theta)p(\theta)}{p(x^1, \dots, x^m)}$$

- Prior probability distribution: $p(\theta)$ (high entropy to reflect high uncertainty)
- Data likelihood: $p(x^1, ..., x^m | \theta)$
- Major differences with MLE
 - Make prediction using full distribution over θ

$$p(x^{m+1}|x^1,\ldots,x^m) = \int p(x^{m+1}|\theta) p(\theta|x^1,\ldots,x^m) d\theta$$

- The influence of priors
- Example: Bayesian Linear Regression

Maximum A Posteriori Estimation (MAP)

$$\theta_{MAP} = \arg \max_{m} p(\theta | x)$$

= $\arg \max_{m} \log p(\theta | x) + \log p(\theta)$

- Advantages:
 - With full Bayesian, leverage information brought by prior and cannot be found in training data, reduce variance but increase bias
 - Could design complicated yet interpretable regularization terms
 - MLE + regularizer = MAP

Challenges Motivating Deep Learning

The Curse of Dimensionality

- ML learning becomes exceedingly difficult when the number of dimensions in the data is high
 - Statistical challenge

• Arose the smoothness assumption

Local Constancy and Smoothness Regularization

- Local constancy prior: Learnt function should keep stable within a small region $f^*(x) \approx f^*(x + \epsilon)$
- Many simpler algorithms rely exclusively on the local constancy prior to generalize well
 - fail to scale to the statistical challenges in AI-level tasks
 - E.g. KNN, decision tree

Break Input Space Into Regions

Local Constancy and Smoothness Regularization

- To answer two questions
 - Whether possible to represent a complicated function efficiently?
 - Whether possible to generalize well to new inputs?
- Solutions
 - Introduce dependencies among regions
 - DL methods DO without stronger task specific assumptions: exponential gain

Manifold Learning

- Manifold assumption
 - Most of \mathbb{R}^n consists of invalid inputs
 - Interesting variations happen only when move from one manifold to another
 - The data lies along a low-dimensional manifold

Manifold Learning

- Images, sounds and text strings are highly concentrated, and in favor of manifold hypothesis
 - Represent data in terms of coordinates on the manifold
- Manifold transformations are imaginably possible

Manifold Learning

- Extracting manifolds is challenging but promising
 - E.g. textbook section 20.10.4

Reading Materials

• Christopher Bishop, *Pattern Recognition and Machine Learning*, Springer Publisher, 2006